

ARD-6 FORM INFORMATION REQUIRED FOR PERMITS FOR INCINERATORS

Air Resources Division/Permitting and Environmental Health Bureau

RSA/Rule: RSA 125-C:12 and Env-A 1700

I.		PMENT INFORMATION – Comp	olete a separa	ite form for each	emission unit.			
		Sion Unit Description: Construction Commonsed ¹ :		Start-Up Date ¹ :				
		s Heat Input Rating (as shown on i						
		mum Charging Rate:	_		tons/day			
					(0113) ddy			
	A. In	cinerator Design						
	1.	Primary Burner						
		Number of Primary Burners						
		Burner Manufacturer		Gross Heat Input Rating (MMBtu/hr) Serial Number				
		Model Number						
		Temperature Control Setting (°	F)	Fuel Type				
	2.	Secondary Burner						
		Number of Secondary Burners						
		Burner Manufacturer		Gross Hea	t Input Rating (MMBtu/hr)			
		Model Number		Serial Nun	nber			
	-	Temperature Control Setting (°F)		Fuel Type				
	3.	Type of Unit						
		Modular Starved Air	Modul	ar Excess Air	Multi-hearth			
		Fluidized Bed	Contro	olled Air	Mass Burn Rotary Water Wall			
		Mass Burn Water Wall	Mass I	Burn Refractory				
		Other (specify):						

	Flue		Chute	9		Direct	
	Batch		Interr	mittent		Continuous	
	Other (spec	cify):					
B. W	aste Burned						
	Waste Type ²		urn Rate /hr) [Frequency o Burning (hr/y		Capacity	Potential Capacity (tons/yr)
	0, 1						
	2						
	3						
	4						
	5						
	6						
	7						
ls A	ack Information semission unit edure tre multiple units of yes, identify oth	quipped with r	this stack?	Yes	No	de data for each	stack)
Is A (!)	emission unit ed	quipped with r	this stack?	Yes	No	Exhaust Orientation ⁵	Stack Monito
Is A (I	pemission unit educe multiple units of yes, identify oth Discharge Height Above Ground Level	quipped with r connected to per emission ur Inside Diameter (ft) or Area (ft²) at	this stack? nits or devices o Exhaust Temperature	Yes n this stack:) Exhaust Flow	Stack Capped or Otherwise Restricted ⁴ (Yes -	Exhaust	Stack Monito (Yes/No) and
Is A (I_ Stack # #5	periodic desiration unit extended the control of th	Inside Diameter (ft) or Area (ft²) at Stack Exit³	Exhaust Temperature (°F) 70 °F	Exhaust Flow (acfm) 1500 acfm	Stack Capped or Otherwise Restricted ⁴ (Yes - Type/No) Yes - Rain Cap	Exhaust Orientation ⁵ Vertical	Stack Monito (Yes/No) and Description Yes – CEM fo
Stack # #5	periodic desiration unit extended the control of th	Inside Diameter (ft) or Area (ft²) at Stack Exit³	Exhaust Temperature (°F) 70 °F	Exhaust Flow (acfm) 1500 acfm	Stack Capped or Otherwise Restricted ⁴ (Yes - Type/No) Yes - Rain Cap	Exhaust Orientation ⁵ Vertical	Stack Monito (Yes/No) and Description Yes – CEM fo
Stack # #5	periodic desiration unit extended the control of th	Inside Diameter (ft) or Area (ft²) at Stack Exit³	Exhaust Temperature (°F) 70 °F	Exhaust Flow (acfm) 1500 acfm	Stack Capped or Otherwise Restricted ⁴ (Yes - Type/No) Yes - Rain Cap	Exhaust Orientation ⁵ Vertical	Stack Monito (Yes/No) and Description Yes – CEM fo
Stack # #5	periodic desiration unit extended the control of th	Inside Diameter (ft) or Area (ft²) at Stack Exit³	Exhaust Temperature (°F) 70 °F	Exhaust Flow (acfm) 1500 acfm	Stack Capped or Otherwise Restricted ⁴ (Yes - Type/No) Yes - Rain Cap	Exhaust Orientation ⁵ Vertical	Stack Monito (Yes/No) and Description Yes – CEM fo
Stack # #5 (Ex)	periodic desiration unit extended the control of th	Inside Diameter (ft) or Area (ft²) at Stack Exit³ 4 ft (Example)	Exhaust Temperature (°F) 70 °F	Exhaust Flow (acfm) 1500 acfm	Stack Capped or Otherwise Restricted ⁴ (Yes - Type/No) Yes - Rain Cap	Exhaust Orientation ⁵ Vertical	Stack Monito (Yes/No) and Description Yes – CEM fo

airpermitting@des.nh.gov or phone (603) 271-1370 PO Box 95, Concord, NH 03302-0095 www.des.nh.gov

09/09/2019 Page 2 of 5

II. FUEL USAGE INFORMATION (List each fuel utilized by this emission unit):

Fuel Type	Heat Value ⁶	Units	Sulfur Content (%)	Moisture Content (%) ⁶	Maximum Fuel Flow Rate	Units	Maximum Gross Heat Input Rate	Units
#2 Fuel Oil (Example)	140,000 (Example)	Btu/gal (Example)	0.0015 (Example)	N/A (Example)	20 (Example)	gal/hr (Example)	2.74 (Example)	MMBtu/hr (Example)

III. UNCONTROLLED AIR POLLUTANT EMISSIONS (list emissions that result from the burning of each fuel and waste utilized by the emission unit <u>prior</u> to add on controls – *use additional sheets if necessary*)

Pollutant	Emission Factor	Units	Emission Factor Source ⁷	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)

Provide an example of the calculations used to determine uncontrolled air pollu	utant emissions, if applicable:

IV. POLLUTION CONTROL EQUIPMENT

	N	ot	Ar	nl	lica	b	le
		υı	\neg N	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ııca	~	

Note: If the emission unit utilizes more than one type of pollution control equipment, provide data for each type of equipment.

09/09/2019 www.des.nn.gov Page 3 of 5

	A. Type of Equipment									
∐ сус	clone (ind	ch diamet	ter)	carbon al	osorption					
☐ mu	ıltiple cyclone (inc	ch diameter)	activated	activated carbon injection					
☐ ele	ctrostatic preci	pitator		baghouse	e/fabric filter					
spi	ray tower			selective	non-catalytic	reduction				
☐ vei	nturi scrubber			spray dry	ing (wet lime	stone injection)			
☐ aft	erburners (incir	neration)		dry sorbe	nt injection					
☐ sel	ective catalytic	reduction	n	reburn						
	ner (specify):			<u>.</u>						
For each contro	ol device, includ	de an Air	Pollution Control	Equipment Mo	nitoring Plan	pursuant to E	nv-A 810.			
			ns (list emissions <u>r all</u> add on contr			_				
Pollutant	Controlled Emission Factor	Units	Emission Factor Source ⁷	Actual (lb/hr)	Potential (lb/hr)	Actual (tpy)	Potential (tpy)			
Provide an exam	ple of the calcu	lations us	sed to determine c	controlled air po	ollutant emiss	sions, if applica	ble:			
Provide an exam	ple of the calcu	lations us	sed to determine c	controlled air po	ollutant emiss	sions, if applica	ble:			
Provide an exam	ple of the calcu	lations us	sed to determine c	controlled air po	ollutant emiss	sions, if applica	ble:			
Provide an exam	ple of the calcu	lations us	sed to determine c	controlled air po	ollutant emiss	sions, if applica	ble:			
Provide an exam	ple of the calcu	lations us	sed to determine c	controlled air po	ollutant emiss	sions, if applica	ble:			
Provide an exam	ple of the calcu	lations us	sed to determine o	controlled air po	ollutant emiss	sions, if applica	ble:			

09/09/2019 Page 4 of 5

ARD-6 FORM INFORMATION INSTRUCTIONS

- 1 If exact date is unknown for Date Construction Commenced or Start-Up Date, you may use 01/01/year. Date Construction Commenced refers to the date the owner or operator has entered into a contractual obligation to undertake and complete a continuous program of construction, reconstruction, or modification of the emission unit. Start-Up Date refers to the date the emission unit is first operated at the facility.
- 2 Waste Types 0-7 are defined in Env-A 100.
- 3 Examples of Inside Diameter or Area at Stack Exit: Diameter at discharge point of convergence cone, if applicable
- 4 Flapper valves and other devices which do not restrict the vertical exhaust flow while the emission unit is operating are not considered obstructions or restrictions.
- 5 Examples of Exhaust Orientation: Vertical, Horizontal, Downward

 Note: for a stack to be considered vertical and unobstructed, there shall be no impediment to vertical flow, and the exhaust stack extends 2 feet higher than any roofline within 10 horizontal feet of the exhaust stack
- 6 Moisture content needed for solid fuels only.
- 7 Emission factor sources may include:
 - Continuous Emissions Monitor (CEM)
 - Stack Test (Provide Date)
 - Vendor Guaranteed Rates (Provide Documentation)
 - AP-42 Emission Factors
 - Material Balance (Provide Sample Calculation)
 - Engineering Estimate